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Abstract

The elastomeric properties of networks of stereoregular polypropylenes (PP) filled with spherical nanoparticles have been modeled in an

attempt to obtain better insights into elastomer reinforcement. The polymers were either isotactic or syndiotactic PP in the amorphous state,

and the simulations were based on rotational isomeric state (RIS) theory combined with the largest eigenvalue method for deriving

conditional bond probabilities. Monte Carlo simulations gave distributions of the end-to-end distance of these chains in the presence of the

particles, and these were used in the Mark–Curro theoretical approach to calculate values of the normalized stress, and the reduced stress

(shear modulus) under uniaxial stretching. The simulations were calculated for PP chains having 100–200 skeletal bonds, for several

temperatures from 481 to 650 K, and for varying filler particle sizes (up to 100 Å). The presence of the filler nanoparticles was found to

influence chain conformations, frequently leading to significant chain extensions, which significantly affect the elastomeric properties of the

nanocomposites.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Solid nanoparticles incorporated into elastomers sub-

stantially improve their mechanical properties, and are

widely used for this purpose. In fact, this reinforcement

phenomenon has been extensively used in many industrial

applications to improve the mechanical properties of such

materials for almost a century. Specifically, the addition of

filler improves a wide range of properties, including the

modulus at given strain, tensile strength, tear and abrasion

resistance, resilience, and extensibility [1]. Experimental

evidence indicates that the reinforcement depends on the

size of filler particles, with maximum improvements

obtained for very large particles of 10–100 nm in radius.
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Larger particles can actually weaken the polymer, instead of

reinforcing it!

Although the reinforcement with fillers has been known

and exploited for a very long time, its molecular origins are

still not clear and there are many different, qualitative

explanations of these phenomena. Particularly during the

last decade, many theoretical and computational studies

have been performed to elucidate the molecular mechan-

isms of filler reinforcement in nanocomposites. However,

the nature of this reinforcement is still not well known, and

there are still many controversies regarding molecular

descriptions of reinforcement in filled elastomers in

particular [2–18].

When polymer chains adsorb at a filler particle surface,

covalent bonds are frequently formed in what is called

chemisorption. Another factor that is closely related to the

adsorption is the change in the distribution of end-to-end

distance of polymer chains in the presence of filler particles.

This ‘excluded volume effect’ imposed by the filler

increases the non-Gaussian characteristics of polymer

chains near the filler particles.
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The first theoretical attempt to explain the dependence of

filled elastomers on the concentration of filler was carried

out many years ago by Guth and Gold [19]. These authors

modified the Einstein viscosity equation for spherical

particles in a viscous medium by adding quadratic term to

account for interactions between particles, and obtained the

equation
hZ h0ð1C2:5fC14:1f2Þ (1)
where h and h0 are the viscosities for filled and the unfilled

elastomer and f is volume fraction of filler. Eq. (1) was later

generalized by Guth to non-spherical particles [20]:
hZ h0ð1C0:67ff C1:62f2f 2Þ (2)
where f is the shape factor used in the estimation of particle

anisometry.

There are several other models of reinforcement in

polymer composites [21], but most of these theories are not

molecular. In fact, there is still a serious lack of a rigorous

extension of the statistical theory of rubber elasticity to

filled elastomers, in spite of their importance. Two

exceptions are a statistical model of filled polymer networks

(by Heinrich and Vilgis) based on the replica formalism

[22], and a simple molecular model of filler reinforcement

(formulated by Kloczkowski, Sharaf and Mark) [23–27]. In

the latter approach, the filler particles change the distri-

bution of the end-to-end distance of the polymer chains, due

to the mentioned excluded volume of the filler and due to the

adsorption of chains onto the filler surface. This leads to the

change of elastic behavior of the polymer network. In this

approach, calculations of the elastomeric properties of

chains in unfilled networks and in filled networks was

carried out using Monte Carlo rotational isomeric state

simulations for single polymer chains. The simulations were

performed for amorphous chains of polyethylene (PE) [23]

and poly(dimethylsiloxane) (PDMS) [24] with various

degrees of polymerization, and for different temperatures

and different sizes of the filler particles.

In the present paper we extend these computations to

filled networks of amorphous polypropylene (PP). PP is

more difficult for theoretical study than is PE or PDMS,

because of its asymmetric carbon atoms (that are absent in

the symmetric chains of PE and PDMS). Because of this

asymmetry there are stereoregular PP chains and stereo-

irregular PP chains, but the present study will focus on the

isotactic and syndiotactic stereoregular forms. The main

motivation of our paper is the study of the effect of tacticity

on elastic properties of polymer chains, and answering the

question if increase of the dimensions of the chains due to

the filler particles (observed experimentally, and in our

simulations for PE and PDMS) holds also for PP.
2. Methodology

The method employed is based on the Monte Carlo

rotational isomeric state model [28,29] for obtaining

distributions of the end-to-end distance for free polymer

chains, and for chains attached at one end to a filler surface.

These calculated distribution functions then enable the

prediction of elastomeric properties of the chains within the

framework of the Mark–Curro theory [30,31].

The distribution P(r) of the end-to-end distance obtained

by Monte Carlo simulation is directly related to the

Helmholtz free energy A(r) of a chain with the end-to-end

distance r

AðrÞZ cKkT ln PðrÞ (3)

where c is a constant. The application of the ‘three-chain

model’ [31] then gives the following expression for the

elastic free energy change during the deformation of the

network, as the function of elongation ratio a

DA Z
n

3
½Aðr0aÞC2Aðr0a

K1=2ÞK3Aðr0Þ� (4)

Here, n is the number chains in the network and r0 is the

value of root-mean-square end-to-end vector of the network

chains. The derivation of Eq. (4) utilizes the simplifying

assumption of affine deformation of the network chains

(their following the macroscopic deformation in a linear

manner).

The nominal stress f* defined as the elastic force at

equilibrium per unit cross-sectional area of the sample in the

undeformed state is

f � ZKT
vDA

va

� �
T

(5)

Substitution of Eq. (4) into Eq. (5) then gives

f � ZK
nkTr0
3

½G0ðr0aÞKaK3=2G0ðr0a
K1=2Þ� (6)

where G(r)Zln P(r), and G 0(r) denotes the derivative dG/

dr.

The most crucial step in our theory is the calculation of

end-to-end distance distribution function for a rotational

isomeric state model of the polymer chains using the RIS

theory and the largest eigenvalue method for the required

conditional probabilities. These analytically obtained

probabilities are later used in a Monte Carlo algorithm

generating representative polymer chains. Our method for

stereoregular PP chains follows the methodology developed

earlier by us for symmetric chains, such as PE and PDMS

[23–27].
2.1. Derivation of conditional probabilities for

polypropylene

The PP chain has a repeat unit with two skeletal bonds.

The presence of an asymmetric center in a chain molecule
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like PP causes a distinction between the handedness of the

rotations around skeletal bonds. Because of this handedness,

the frequencies of states corresponding to the left and right

rotations differ.

For asymmetric vinyl chains (–CHR–CH2–)x such as PP

(with R being CH3), we have two different statistical weight

matrices corresponding to different stereochemical con-

figurations. If the R groups are located in the front of the

plane formed by the skeletal bonds of the fully extended

chain, the corresponding carbon atoms are called d centers,

while C atoms having R groups located behind this plane are

called l centers [28]. Since any 1808 rotation about the

vertical axis of this plane changes d centers to l centers (and

l centers to d centers) the stereochemical configuration of a

given center is defined relative to its neighboring centers.

Therefore, the pair ll is equivalent to dd due to symmetry,

but differs from the pair ld (or dl), since such a symmetry

operation cannot be applied. Such stereochemical neighbor

pairs are called dyads [28].

For the dd dyad the two statistical weight matrices are

[28,32]: U0
d corresponding to the CHR–CH2 bond, and U00

d

corresponding to the CH2–CHR bond.

The statistical weight matrices for the ll dyad are U0
l and

U00
ll that are equivalent to ðU0

dÞ
T and ðU00

dÞ
T [28]. For the

syndiotactic chains the statistical weight matrices are U00
dl

and U00
ld [28]. All these statistical weight matrices depend on

four RIS theory parameters h, t, u and t* [28]. More details

about these matrices and explicit expressions for U0
l; U

00
ll;

U00
d; U

00
dd; U

00
dl and U00

ld in terms of the parameters h, t, u and

t* are provided in Ref. [28]. For the isotactic PP, these

matrices repeat regularly in the sequence ðU0
d U

00
dÞx where x

is the number of dyads, so one may combine them into a

single matrix [28,32]:

Uð2Þ
isotactic ZU0

dU
00
dd (7)

The above equation applies to dd dyads, and for ll dyads

the corresponding equations have a similar form. For

simplicity we will use a shorter notations Ua and Ub and

U(2)ZUa Ub, which describe both dd and ll dyads. In the

case of syndiotactic chains, however, matrix U(2) equals

U0
dU

0
dlQ, where

QZ

1 0 0

0 0 1

0 1 0

2
64

3
75

is the matrix that interchanges rows and columns

corresponding to the states gC and gK [28,32].

We note that there are several different rotational

isomeric state models of PP that differ in the number of

rotational states assumed [33–37]. The first model, proposed

by Flory and coworkers, was based on three rotational states

[33]. There are more accurate models of PP involving five

rotational states developed by Suter and Flory [37], or even

nine states (Boyd and Breitling) [36]. The three-state model

with proper parameterization [35] has, however, been
successfully used for calculations of various properties of

PP chains. In the present work we use the simplest three-

state RIS model proposed by Abe, Tonelli, and Flory in

1970 [33]. Values of the parameters used were hZ1.0, tZ
0.5, uZ0.05, and t*Z1.0, which correspond to the

temperature 481 K.

The largest eigenvalue method developed recently for

stereoregular vinyl chains by Kloczkowski, Sen and Sharaf

[38] leads to the following expression for the bond

probabilities:

Pa;xh Z
1

l1
B1xua;xh½A11ub;h1 CA21ub;h2 CA31ub;h3� (8)

and

Pb;xh Z
1

l1
ub;xhAh1½B11ua;1x CB12ua;2x CB13ua;3x� (9)

where Aii and Bij are ij-th elements of matrices A and BZ
AK1 obtained from the diagonalization of the matrix U(2)

BUð2ÞAZL (10)

Here,L is the matrix containing eigenvalues on the diagonal

and zeros off-diagonal and l1 is the largest eigenvalue; ua,xh

(or ub,xh) are elements of the matrices Ua and Ub.

It is now straightforward to obtain the conditional a priori

bond pair probabilities that the bond i is in state h given that

bond iK1 is in state z:

qa;xh Z
Pa;xh

Pa;x

(11)

qb;xh Z
Pb;xh

Pb;x

(12)

where Pa;xZ
P3

hZ1 Pa;xh and Pb;xZ
P3

hZ1 Pb;xh are single

bond probabilities. The conditional probabilities can be used

for a very efficient Monte Carlo generation of long polymer

chains, we should however note that this involves an

approximation, that may effect results, especially for bonds

close to chain ends.
2.2. Monte Carlo chain generations

The generation of a representative chain consisted of

finding a sequence of rotation angles, i.e. sequences of trans

and gauche conformations. For the case of PE, the first bond

of the PE chain was assumed to be in the trans conformation

[23]. Random numbers were then generated for each of the

remaining skeletal bonds. Specifically for the second bond,

0%r!qz1 was taken to specify a trans conformation,

qz1%r!(qz1Cqz2) was taken to specify a gaucheC
conformation, and (qz1Cqz2)%r!1 a gaucheK confor-

mation. The next bond was then positioned using the same

algorithm, but with the row index z of the elements q

determined by the conformation of the previous bond. The

process was repeated until the entire conformation of a PE
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chain of n bonds was generated. The Monte Carlo

generation of PP was very similar, but instead of a single

conditional probability matrix, there were two alternating

matrices Qa and Qb. The conditional probabilities qzh,a and

qzh,b were therefore also alternated during the generation of

the chain. It was also necessary to make a trivial assumption

with regard to the first carbon atom of the PP chain, and this

was that the group was of the type –CH2–. Large numbers of

Monte Carlo chains (NZ500,000) were thus generated to

ensure an adequate statistical sample. For each chain, the

end-to-end vector r was calculated using the formula [28]:

rZ ðECT1 CT1T2 C/CT1T2.TnK1Þl (13)

Here, E is the unit matrix of order 3, l is the bond vector

col(l0,0,0), where l0 is the equilibrium bond length (l0Z
1.54 Å for the C–C bonds). The rotational matrices Ti(1!
I!nK1) are given by [28]

Ti Z

cos qi sin qi 0

sin qi cos 4i Kcos qi cos 4i sin 4i

sin qi sin 4i Kcos qi sin 4i Kcos 4i

2
64

3
75 (14)

and the complement bond angles qi is 68.08. The rotational

angles are 0, 120, and K1208 for conformations t, gC, and

gK. It was assumed that the first bond between the filler and

the chain is perpendicular to the surface of the sphere and is

contacting the spherical particle. The assumption is that the

first bond is perpendicular is arbitrary but trivial, and

simplifies the model. During the process of chain

generation, each bond of the chain was tested for

overlapping with the filler particle. If any bond penetrated

the particle surface the whole chain conformation was

rejected (Fig. 1). The resulting acceptable values of r were

then placed into a histogram to produce the desired end-to-

end distance probability distribution function P(r/nl0).

We constructed a histogram with 20 equally spaced

intervals over the allowed range (0!r/nl0)!1, since

previous studies showed that this choice was the most

suitable for obtaining probability distribution functions

[39]. This distribution function was obtained by accumu-

lating the numbers of Monte Carlo chains with end-to-end

distance within various space intervals, and dividing these
Fig. 1. Schematic representation of the filler system employed in this study.

A spherical particle is positioned in the middle of the coordinate system,

and the chain generation started on its surface. Chain conformations that

trespassed on the particle were rejected, and statistical calculations were

performed on the remaining acceptable conformations.
numbers by the total number of the Monte Carlo Chains, N.

The function P(r/nl0) was smoothed using the IMSL cubic

spline subroutine CSINT. The smoothing procedure is

necessary for the proper calculation of the stress–strain

isotherms from the Monte Carlo histogram [39].
2.3. Modeling of uniaxial elongation

These results can be used directly in the Mark–Curro

method to calculate the elastomeric network properties of

any non-Gaussian chains from the distribution functions

P(r) [30,31]. As already described, P(r) is directly related to

the Helmholtz free energy A(r) of a chain having the end-to-

end distance r (Eq. (3)). This equation can be applied to the

case of elongations in which the chains respond affinely to

the macroscopic deformation. The macroscopic defor-

mation l along the direction i is defined as

li Z
Lti

L0i

(15)

Here L0i is the length of the sample in the direction i (iZ
x,y,z) in the unfilled reference state and Lti is its value in the

filled network during the experiment. Assuming an affine

deformation, L0i and Lti are both related to the i components

of the end-to-end vector of the chains. The three main-axis

deformation tensor components are related to the volume at

the start of the experiment V, and the reference volume V0 of

the isotropic unfilled network by

l1l2l3 Z
V

V0

(16)

Since in this study anisotropy is induced only along the

direction of the deformation, it follows that two of the three

terms are equivalent. As would be expected, VsV0 due to

anisotropy of the polymer chain induced by the filler

particles. The deformation ratio ai relative to the dimension

Lti during stretching is given for the case of isotropic

deformation by

ai Z
V

V0

� �K1=3

li (17)

for anisotropic deformations

ai Z ðltiÞ
K1

lt (18)

Incompressibility of the network is assumed, so the

volume V remains constant after the stress is applied. When

the deformation is applied along the draw direction, for

example the z-axis,

lz Z ðlztÞa lx Z ly Z ðlxtÞa
K1=2 (19)

Within these approximations, the three-chain model leads to

the general expression for the elastic free energy change

during deformation given by Eq. (4). [30,31]:

The nominal stress f* defined as the elastic force at

equilibrium per unit cross-sectional area of the sample in the
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undeformed state [40] is given by Eq. (6). The modulus (or

‘reduced stress’) is defined by [40]

½f ��Z
f �

aKaK2
(20)

and is often fitted to the Mooney-Rivlin semi-empirical

formula [40]

½f ��Z 2C1 C2C2a
K1 (21)

where C1 and C2 are constants independent of deformation

a. Some of the present results obtained will be presented in

this form.

The numerical calculations were performed for PP chains

having lengths 100–200 skeletal bonds between cross-links,

for spherical particles radii ranging from 0 to 100 Å, and for

temperatures from 481 to 650 K.
3. Results

3.1. The effects of chain length

Fig. 2 shows the normalized end-to-end distance

distribution for isotactic PP at chain lengths of 100, 150,

and 200 bonds, at 481 K, in the presence of fillers of size

10 Å. The normalization was performed by dividing the

end-to-end distance by the maximum chain extension,

where n is the number of bonds, and l is the bond length. The

distributions show a Gaussian character. With increasing

chain length, the distribution becomes narrower and its peak

shifted towards smaller values according to the theory of the
Fig. 2. The normalized end-to-end distance distribution for isotactic PP as a func

emphasize the effect of the filler, the distributions when no filler is present are al
freely jointed chain model [28]. Fig. 2 shows that the

presence of the filler particle leads to the attrition of shorter

chains as a result of steric clashes and shifts the distribution

to the right.

Fig. 3 shows the end-to-end chain distribution of

syndiotactic PP at TZ481 K, 10 Å for various chain

lengths. We again observe that with increasing chain length,

the distribution becomes narrower, and the peak position

shifts to lower values. However, there is striking difference

between the distribution of isotactic and syndiotactic PP: at

the same chain length, the peak position for syndiotactic PP

is greater than that of isotactic PP. This difference arises

since syndiotactic PP is more likely to assume trans

conformations than is isotactic PP.

Fig. 4 shows the nominal stress for syndiotactic PP under

the same conditions as in Figs. 2 and 3. The calculations

were performed for chains of 100, 150, and 200 bonds. At

the beginning of the elongation, the chains of different

lengths followed the same linear curve corresponding to the

elastic region. The plastic region appears earlier for chains

of 100 bonds as compared to the chains of 150 or 200 bonds,

which basically follow almost the same pattern throughout

the elongation. Chains of 100 bonds require greater stresses

to be elongated once this critical point is reached. This need

for higher stresses can be explained in light of end-to-end

distance distribution in Fig. 3: since the chains of 100 bonds

are already more extended than the chains of 150 and 200

bonds, the amount of additional elongation they can endure

until the end of elastic region is more limited. Once the

plastic region is reached, the stress development gains a

non-linear character as elongation is continued.
tion of chain length, at TZ481 K, with a filler radius of 10 Å. In order to

so plotted.



Fig. 3. The normalized end-to-end distance distribution for syndiotactic PP

as a function of chain length, with TZ481 K, with a filler radius of 10 Å.

Fig. 5. The normalized end-to-end distance distribution of isotactic PP for

various filler sizes, for chains of 150 bonds, at TZ481 K.
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3.2. The effects of filler size

Fig. 5 shows the normalized end-to-end-distance distri-

bution of isotactic PP for filler sizes up to 100 Å. The curves

show that filler size did not affect the distribution shape, but

larger fillers slightly shifted the distribution to larger

distances. This shift can also be seen in the simulations of

filled PE and PDMS reported in previous studies [23,24].

This effect originates solely due to the filler geometry. An

increase in the filler radius promotes slightly larger values of

r/nl since chains can now go around the filler.

For large diameters of the filler particle, relative to the

size of the chain, the distribution function of the end-to-end

distance of polymer becomes weakly dependent on the

diameter of the sphere, approaching the limiting distribution

of a chain attached to a flat surface (saturation effect).

Fig. 6 clearly shows the effects of end-to-end distance

distribution on the nominal stress as a function of stretching

ratio. Since the chains are already extended at large filler
Fig. 4. The nominal stress for syndiotactic PP as a function of stretch ratio

for different chain lengths, at TZ481 K, at a filler radius of 10 Å.
sizes, the stress necessary for stretching a chain that is

already extended is higher than that of a less extended chain.

The effect of saturation can again be seen by comparing the

nominal stress curves for the cases involving 50 and 100 Å.

The initial reduced stresses in Fig. 7 agree with previous

results. The initial shear moduli increased with increasing

filler size due to the degree of chain extension before

elongation. At the beginning of the elongation, the moduli

stayed almost constant. However, in later stages of

stretching, the modulus curves reach an upturn at a critical

stretch ratio, which is independent of filler size. After this

point, the chain stretching acquires a non-Gaussian

character.
3.3. The effects of temperature

Fig. 8 illustrates the normalized end-to-end distance

distribution for syndiotactic PP at temperatures ranging

from 481 to 650 K.
Fig. 6. The nominal stress for isotactic PP as a function of stretch ratio for

various filler sizes, for chains of 150 bonds, at TZ481 K.



Fig. 7. The reduced stress (shear modulus) for isotactic PP as a function of

stretch ratio for various filler sizes for chains of 150 bonds at TZ481 K.

Fig. 9. The nominal stress for syndiotactic PP as a function of elongation at

various temperatures for chains of 150 bonds, with a filler radius of 10 Å.
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With increasing temperatures, the distribution curve

became narrower, and the peak was shifted to lower end-to-

end distances. At low temperatures, the low-energy trans

bonds are preferred, and therefore larger end-to-end

distances were reached. At high temperatures, however,

more higher-energy conformational states were available to

the bonds, an outcome which shifted the distribution curves

and populated it with shorter chains.

Fig. 9 again shows the effect of pre-extended chains in

the extension. With increasing temperatures, fewer and

fewer bonds populate trans conformations, and sub-

sequently, less stress is necessary for chain elongation.

The end of the elastic region can be clearly seen in

Fig. 10 where the reduced stress showed an upturn during

elongation. This critical transition point was difficult to

identify from these results, since the variance may well be

caused by computational errors introduced by derivative

calculations. However, the reduced stress curves clearly

agreed with the results presented in Figs. 8 and 9.
Fig. 8. The normalized end-to-end distance distribution of syndiotactic PP

at various temperatures, for chains of 150 bonds, with a filler radius of 10 Å.
4. Conclusions

Conformational aspects and deformation characteristics

of isotactic and syndiotactic polypropylene filled with

spherical nanoparticles were successfully elucidated.

Chains having from 100 to 200 skeletal bonds were

generated on the surface of a filler particle at temperatures

ranging from 481 to 650 K. This clarified the effects of

presence of the filler particles, for radii up to 100 Å.

Increasing the chain length or decreasing the temperature

were found to affect the chain properties similarly: the

normalized mean end-to-end distance increased, in turn

shrinking the elastic region during deformation. Increasing

the filler size also increased the normalized mean end-to-

end distance slightly.

Also clarified were the effects of PP tacticity. Since

syndiotactic PP more readily assumes the trans confor-

mation, the normalized mean end-to-end distance is greater

than that of isotactic PP. This difference affects the
Fig. 10. The reduced stress for syndiotactic PP as a function of elongation at

various temperatures for chains of 150 bonds, with a filler radius of 10 Å.
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deformation, since the syndiotactic chains reach the end of

the elastic region at lower elongations than do the isotactic

chains.

The present results showed increases of the dimensions

of the chains due to the filler particles, in agreement with

results reported in earlier papers [23–27]. Very relevant here

is the fact that such increases in dimensions have been

observed in experimental scattering studies on PDMS by

Nakatani et al. [41,42]. It has therefore become increasingly

important to understand some simulations that have led to

the opposite conclusion, namely that filler particles should

decrease the dimensions of chains in filled elastomers [3,5].

Indeed, our new simulation results with denser polymer-

filler systems, (where instead of studying a polymer chain

attached to a single filler particle, we study interaction of a

chain with multiple filler particles) suggest that the filler

particles increase chain dimensions only up to a certain

critical filler size; above this critical filler size, the filler

particles decrease chain dimensions. This problem in denser

polymer-filler composites will be studied in more detail in

our future work [43].
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